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ABSTRACT

The objective of the present work was the structural optimization of thin shell structures

that are subjected to stress and displacement constraints. In order to accomplish this, the

structural optimization computer program DESAP1 was modified and improved. In the static

analysis part of the DESAP1 computer program the torsional spring elements, which are used to

analyze thin, shallow shell structures, were eliminated by modifying the membrane stiffness

matrix of the triangular elements in the local coordinate system and adding a fictitious

rotational stiffness matrix. This simplified the DESAP1 program input, improved the accuracy

of the analysis, and saved computation time. In the optimization part of the DESAP1 program

the stress ratio formula, which redesigns the thickness of each finite element of the structure,

was solved by an analytical method. This scheme replaced the iterative solution that was

previously used in the DESAP1 program, thus increasing the accuracy and speed of the design.

The modified program was used to design a thin, cylindrical shell structure with optimum

weight, and the results are reported in this paper.



1. INTRODUCTION

1.1 General

In the past, discrete optimality criteria have been derived for a number of design conditions

including strength, static stiffness, dynamic stiffness, static stability, and aeroelastic constraints.

The computer programs DESAP [1], DESAP2 [2], and FASTOP [3], as well as OPSTAT,

OPTCOMP, OPTIM, ASOP [4], and others, use the discrete optimality criteria approaches as a

basis for structural optimization. These programs are based on the finite element method of

analysis and can optimize isotropic, anisotropic, and layered composite structures. The codes

can handle over 1(}00 design variables and a comparable number of analysis variables, which are

the degrees of freedom.

This paper examines the structural optimization of thin, shallow shells by using the

DESAP1 structural optimization program. DESAP1 was developed to design structures with

linear elastic material behavior. The total weight of the structure is minimized by computing

the element sizes, that is, the cross-sectional areas for trusses and beams and the thicknesses for

plates and shells, under certain constraints. The static analysis of the design is computed by

using the finite element method. For purpose of analysis the SAPIV finite element program [5]

was modified for use in the DESAP1 computer program. The synthesis algorithm of DESAP1

consists of iterative processes. Each iterative process comprises three steps: (1) static analysis

of the current design, (2) comparison and evaluation of the results of the static analysis, and

(3) redesign of the structure by using information from the previous two steps.

Two kinds of constraints are used in DESAPI: primary constraints and secondary

constraints. The primary constraints are displacements and stresses with upper limits. The

stress constraints are failure criteria, or local instability criteria, or both. If stress constraints

are used in the redesign of the structure, the stress ratio method [1, 6, 7] is applied to drive the
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final designto the fully stressed design. In the fully stressed design each element is assumed to

reach the allowable stress under at least one load condition. The fully stressed design always

coincides with the minimum-weight design for statically determined structures, but the design

need not be fully stressed at optimum for statically indeterminate structures, in general. For

displacement constraints the redesign procedure [6] is based on an optimality criteria method,

and the element sizes (thicknesses) are obtained for the optimum weight design.

The secondary constraints consist of the minimum allowable element sizes and the size

proportional constraints, whereas the element sizes have a prescribed ratio. In the DESAP1

program it is assumed that the static loading is independent of the element sizes. Also, during

the design procedure the layout of the structure is not changed.

This study involved the following steps:

(1) In the static analysis part of the DESAP1 program the torsional spring elements, which

are used to analyze thin, shallow shell structures, were eliminated by modifying the membrane

stiffness matrix of the triangular elements in the local coordinate system and adding a fictitious

rotational stiffness matrix as suggested by Zienkiewicz [8, 9].

(2) In the optimization part of the DESAP1 computer program the iterative solution of a

fourth-order equation, which redesigns the thickness of each finite element of the structure, was

replaced by an analytical solution.

(3) A thin shell structure was designed to minimize its weight and was subjected to stress

and displacement constraints.

1.2 Element properties

The weight W i of an element i can be written as

Wi -- Pi ti i -- l,..,I



where Pi isthe unitweight and ti isthe size(thickness)of the element i. Because itisnot

desirableto have each ti as an independent variable,the form

ti=niD m

isintroducedfori= 1,...,Iand m = 1,...,M< I,where D m are independentvariablesand ni is

the designvariablefractionof the element. For each element,ni and m must be defined[1].

The stiffnessmatrix [Ki]ofelement ican be writtenas

where [Ki(1)] is the unit stiffness matrix due to the action of the direct stresses, [K_(2}] is the unit

stiffness matrix due to the bending or torsion, and n i is the inertia exponent, which is

determined by the relationship between the size and moment of inertia of the element as follows:

Ii = Ji tnii

where Ji is the unit moment of inertia.

The vector of the internal forces {Ni} of node i is computed from the previously computed

element nodal displacements {ui} as follows:

{Ni} --[Si]{ui} + {T i}

where [Si] is the recovery matrix and {Ti} is the force vector [1].

1.3 Stress-ratio formula

If stress constraints are imposed in the DESAP1 program, the stress ratio method is used.

In order to obtain the redesign stress ratio formula, the Von Mises yield criterion is applied at

each element of the plate or shell structure.

First, the assumption is made that a single load condition is imposed in the structure. The

yield criterion f for an element i has the general form:

f({Ni} , {Ni} , t) -- 1 (1)



where{Ni} is the vector of the internal forces on the nodes of an element i due to a single load

condition; {N_} is the vector of the allowable forces; and t is the thickness of an element i of

the plate or shell structure.

If the improved design is to be fully stressed and {N[} and t' are the improved values,

the following form must be satisfied:

, (2)
f({N_}, {Ni}, t') : 1

If {N_} is known, the improved value of the thickness t' is calculated from Eq. (2). The

calculation of {N_} is obtained by inverting the structural stiffness matrix. In the DESAP1

program this inversion is impractical for large structures because the banded form of the

structural stiffness matrix is lost after its inversion. For this reason it is assumed that the nodal

forces {N_} : {Ni} do not change.

following equation:

Substituting the values of (N_) into Eq. (2) gives the

f({Ni} , {Ni} , t') : 1 (3)

The solution procedure consists of solving Eq. (3) for t' load conditions at a time and

then choosing the largest value for the improved thickness. This procedure is the stress ratio

method of redesign as it is used in the DESAP1 program. Equation (3) is an approximation and

must be applied iteratively, updating {Ni} each time, before a fully stressed design is obtained.

In order to check the design process, the following two controls were established:

(1) The design is critical if

- d) < <_(1 + d)

where d is a small parameter described by the user of the program that expresses the desired

width of the critical design band; Rma x is equal to max (Dm/Dra), where D m and Dm are

5



the previous and the new values, respectively, and Dm is the largest value of the following two

equations:

Dm = t'/n i

where ni is a parameter described by the user for an element i, or

where D*_ is the prescribed lower thickness of the secondary constraints. When equal or

proportional size constraints are used, Dm is defined by choosing the largest value of the

following two equations:

or

and

Dm = max (t'/ni)

(2) The design is fully stressed if it satisfies the following two conditions simultaneously:

(1 - d) < Rma x < (1 + d) (critical design)

(l-d) <Rmi n< (l+d)

where Rmi n is equal to min (D m = Din).

1.4 Hencky-Von Mises failure criterion

In this study the plate or shell structure was assumed to consist of material that is isotropic

and homogeneous. The Hencky-Von Mises failure criterion was used to obtain the redesign

stress ratio formula. The failure function f of Eq. (1) takes the following form:

*2 *2 * * * 2 (4)f = (sx/sx) + (Sy/Sy)- sxsy/s sy + (S y/Sxy)= 1

where Sx and Sy are the normal stresses at a point in the element, Sxy is the shear stress at a

point in the element, and Sx, Sy, and Sxy are the allowable normal and shear stresses.



Thebasicassumptionwasthat the resulting internal forces remain unchanged during the

redesign:

Nx = Nx

Ny--Ny

Nxy = Nxy

M_y : Mxy

where N' and M' are the values of the improved design and N and M are the values of

the previous design.

The internal stresses that are developed in the shell under the external static load consist of

the membrane components and the bending components. The membrane stresses

S'x, 'Sy, and Sxy at a point are given by

t

Sx = Nx/t' (5a)

?

Sy = Ny/t' (5b)

t

Sxy = Nxy/t' (5c)

S' is the value of the improved design and t' is the value of the improved thickness ofwhere

an element of the shell structure. The allowable membrane stresses are

* : N_t/tSx

Sy : Ny/t

* * t

Sxy ----- Nxy/t

at a point are given by [10]

S'x = --I-6Mx/t '2

Sy = +6My/t '2

t t

The bending stresses S'x, Sy, and Sxy

(6a)

(6b)



The allowable bending stresses are

s;< 1%,/: ±6 t 'i
Y Y

S* = 6M/t i

* = 6M;/t 2Sy

S_,y M/t _=6 Y

Therefore, in a shell structure the stresses at a point are given by the following forms:

t * t * t *

(Sx/Sx) : (Sx/Sx)membrane Jr- (Sx/Sx)bending

(6c)

(7a)

From Eq. (7a)

Similarly,

and

(Sy/Sy) = (Sy/Sy)membran e + (Sy/Sy)bending

u * , * , $

(Sxy/gxy) : (Sxy/Sxy)membran e -I- (Sxy/gxy)bending

(SxlS x ) : (Nx/Sx) (tit') =t= (Mx/M:)(t/t') 2

(Sy/Sy) = (Ny/Ny) (tit') + (My/M;)(t/t') i

(Sxy/Sxy) = (Nxy/Nxy) (t/t') -t- (Mxy/M:y)(t/t') i

(7b)

(7c)

(8a)

(8b)

(Sc)

Multiplying Eqs. (8a) and (8b) gives

s i * t

(SxlSy)t(SxtSy)= [(Nx/Nx)(t/t' ) -t- (M,<lM,<)Ctlt')l]

x [(Ny/Ny ) (tit') -4- (Mr/M;)(tit') l]

(Sd)

Substituting the values

following equation:

s * # ,li

Sx/Sx, Sy/Sy, and
t i

Sxy/Sxy from Eqs. (8) into Eq. (4) yields the
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[(NJNbCt/t')• (_/_)(t/t')212+ ' ,' [CN/Ny)Ct/t) ± (_/_)(t/t')_] _

+ [(N_/N_y)(t/t')+ (_/_y)(t/t')2] 2- [(NJN_)(t/t')± (_/_)(t/t') 2]

[(N/_)(t/t
$ t× ) • (_/_)Ct/t') _]= 1

Simplifying this equation gives

(t'/t) 4 - Cxx(t_/t) 2 q: Cx(t'/t ) - C = 0 (9)

where the minus sign preceding Cx is applicable to the upper surface of the plate or shell, and

the plus sign, to the lower surface. In Eq. (9) the following notation was used:

Cxx = (Nx/N:) 2 + (Ny/N;) :_ + (Nxy/N:y) 2- NxNy/N:N;

Cx = 2[(Nx/N:)(Mx/M_)+ (Ny/N;)(My/M_) + (N:/N;)(Mxy/M_) ]

- [(Nx/N:)(My/IVy) + (Ny/N;)(Mxy/M_y)]

(10a)

(lOb)

and

c = + + _ (10c)

Further investigation into Eqs. (10a) and (10c) (see Appendix) gives Cxx > 0 and C > 0.

These inequalities were used to find the positive and real solution of the quartic Eq. (9).

In order to solve the quartic equation

X4 - Cxx x2 :F CxX - C = 0 (11)

where X = t'/t, it was reduced to the resolvent cubic equation [11]. The resolvent cubic

equation of the quartic is

y3 + Ay2 + By + D -- 0 (12)



whereA = -Cxx , B -- 4C, and D = -Cx2 - 4CxxC. The analytical solution of the roots of the

cubic Eq. (12) according to Cardan's method is described by Borofsky [12]. By the analytical

solution of the quartic equation, a much greater accuracy and computational efficiency was

achieved than when an iteration method was used to obtain the solution.

2. SHELL STRUCTURES

The original DESAP1 computer program uses torsional spring elements, which are springs

that are defined as normal to the fiat shell surface, to eliminate the singularity of the total

stiffness matrix in the global coordinate system. Because it is time consuming to define the

normal direction at each point on the shell structure surface, the DESAP1 subroutines were

modified so that thin shells could be designed without using the torsional spring elements. In

order to explain the procedure that was followed, shell structures and finite element theory are

reviewed briefly.

The classical theory of shell structures is discussed by Flugge [13]. When applying the finite

element method to shell problems, it is assumed that the behavior of a continuously curved

surface can be represented by the behavior of a surface that is built up with small fiat elements.

In any shell structure the elements generally will be subjected to both bending and in-plane

forces [14]. For example, consider typical triangular fiat elements that are subjected

simultaneously to in-plane and bending actions (Figs. 1 and 2). In Fig. 1, un and vn (n -- i, j, k)

are the nodal displacements, and Un and V n are the corresponding nodal forces. In Fig. 2,

Wn, 0xn , and 0yn (n -- i, j ,k) are the nodal displacements, and Wn, Mxn , and My n are the

corresponding nodal forces. Taking first the in-plane (plane stress) action, the state of the strain

is uniquely described in terms of the ui and v i displacement of each typical node i in the x'

and y' local coordinate directions, respectively. The minimization of the total potential

10



energyled to the stiffness matrices described by Zienkiewicz [8], which relate nodal forces

displacement parameters

Fp = KPd p

For a triangular element Kp is a 6-by-6 matrix [7].

Similarly, when bending is considered, the state of strain is given uniquely by the nodal

displacement w i and the two rotations

corresponding nodal forces are given by

F p to

0xi and 0y i at each node i (Fig. 3). The

F b : Kbd b

For a triangular element Kb is a 9-by-9 matrix [7].

Before combining the in-plane and bending stiffnesses note (1) that the displacements

prescribed for in-plane forces do not affect the bending deformations and vice versa and (2) that

rotation 0si about the z' axis is not involved in the deformations in either node. Combining

the membrane and bending actions and introducing 0_i and its associate couple Mzi gives for

an element node i the following nodal displacements di and nodal forces Fi:

di : bi vi wi 0xi 0yi Ozi] T

and

For an element

:

F : kd (13)

where for a triangular element containing nodes i, j, and k the element force and displacement

vectors are
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and the element stiffness matrix in the local coordinates is

K = Kp + Kb

The total stiffness matrix K is an 18-by-18 matrix and is illustrated in Fig. 3.

(14)

2.1 Replacement of torsional spring elements

In a shallow shell structure, if all the elements meeting at a node i are coplanar, numerical

problems due to the singularity of the stiffness matrix arise in the DESAP1 program. Because it

was assumed that the moment Mzi and the stiffness are zero in the 0zi direction in the local

system (Fig. 1), the sixth row and column of each submatrix Krs of the total stiffness matrix

contain zeroes [7]. If the set of all equilibrium equations is considered at the point i, in the local

system, six equations result, of which the sixth equation is

Mzi : 0ui + 0vi + 0wi + 00xi + 00y i + 00zi (15)

or 0 = 0. The difficulty persists when the six equilibrium equations at the point i are

transformed to global coordinates. Because these equations will still have a singular matrix, a

solution cannot be obtained [8, 9, 15]. The following three techniques for eliminating the

singularity of the stiffness matrix have been used in existing literature:

(1) References 8,15, and 16 eliminate the sixth row and column from the stiffness matrix to

obtain a nonsingular 5-by-5 stiffness matrix. However, it is impractical to apply this technique

to DESAP1 because programming difficulties are encountered that would require an extensive

revision of the DESAP1 source program.

(2) The DESAP1 and SAPIV computer programs use the torsional spring elements to

eliminate the singularity of the stiffness matrix. The spring element has a torsional stiffness

that is normal to the shell surface (Fig. 4). Two methods are used to specify the direction of the

spring elements in DESAP1 (Figs. 5 and 6). In the first method the direction is determined by
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the structuralnodeN and a second node I (Fig. 5). Node I may be a structural node or a special

node. In the latter case the degrees of freedom of node I should be suppressed on the node. In

the second method the direction of the element is taken as perpendicular to the lines IJ and KL

(Fig. 6). The points I, J, K, and L may be structural nodes or special points (with suppressed

degrees of freedom). The torsional spring elements give rise to additional terms along the

diagonal of the element stiffness matrix K [7]. These new terms have values that are equal to

the rotational stiffness of the spring. Transforming the matrix K of each element to the global

system and adding all the matrices give a nonsingular stiffness matrix of the structure.

Although the use of torsional spring elements in eliminating the singularity is feasible, it is

both difficult and time consuming to find the directions that are normal to the shell structure at

the nodal points in order to define the new nodes and the torsional stiffnesses associated with

them. Therefore, discovering a simpler way to overcome the use of boundary elements would

save time and make the program easier to use.

(3) References 8, 9, and 17 eliminate the singularity of the stiffness matrix by adding a

fictitious rotational stiffness matrix in the membrane stiffness matrix K p. Here it is assumed

that a nodal rotation 0zi about the z' local axis of any one triangular element node is

responsible only for the development of resisting couples M_i , Ms], and Mzk at the three

element nodes and does not produce any other reactions. In order to ensure static equilibrium,

the sum of the couples Mzi , Mzj , and M_.k is always taken to be zero. Zienkiewicz et al. [8, 9]

determined that satisfactory results are obtained if these couples are proportional to the modulus

of elasticity E and the volume At of the triangular element, where A is the area and t is

the thickness of the element. They suggested the following moment-rotation relationship:
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--- aEAt . 1 .5 " zj

• -0.5 r'zkl

where a is an undetermined coefficient• A realistic value of a was estimated to be

approximately 0.03 [9, 17]. A displacement error of about 10 percent is caused by introducing a

value as large as 1.0. The displacements for very small values of a are nearly exact. However,

for practical purposes, extremely small values of a are possible only when a large

computational precision is available• In the present research a value of a = 0.03 was used so

that Eq. (16) can be written as

= B/2 B - 2. ,j

FB/2 -B/2 p,kl

where B = 0.03EAt. Adding the stiffness coefficients B and -B/2 of Eq. (17) in the

appropriate positions in the membrane stiffness matrix Kp in the local system yields a new

membrane stiffness matrix of the element [7]. The combination of the updated membrane

stiffness matrix and the bending stiffness matrix gives the total stiffness matrix in the local

system for a triangular element i, j, k (Fig. 3). (In Fig. 3, C = B/2.) Transforming the total

stiffness matrix from the local to the global system of each element and adding them gives a

nonsingular structural stiffness matrix. This procedure eliminates the singularity of the

structural stiffness matrix in the global system for shallow shell structures in the DESAP1

computer program.

(16)

(17)
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3. EXAMPLE PROBLEM: THIN SHELL STRUCTURE

Consider a thin, cylindrical shell structure with an angle of 10 ° (Figs. 7 and 8) that is

subjected to a concentrated load of 128 kips at the center. The shell, 36 ft long and 30 ft wide,

is simply supported at the two opposite edges and is free at the other two edges. The material

behavior of the structure is linear elastic, isotropic, and homogeneous. The design of the shell

structure was obtained by the modified DESAP1 program. Because of the symmetry of the shell

structure, only one-fourth of the shell (Fig. 9) is required to employ the finite element method.

Young's modulus of elasticity of the material is 4.38)< 108 lb/ft z, the specific weight is

360 lb/ft 3, and the Poisson's ratio is 0.3. The concentrated load on the quarter shell structure is

32 kips. The design commenced with a uniform thickness t for all the elements equal to

1.14 ft. The minimum size constraint for all the element thicknesses was 0.1 ft. All the plate

elements were sized independently.

Both displacement and stress constraints were used. Only the displacement constraints

were used first to allow for the thickness of the element to converge faster; they were applied at

the center of the shell structure. The magnitude of the displacement constraint is 0.055 ft in the

z direction. The stress constraints are added later, and the magnitude of the allowable stress in

tension S_ is 25 000 lb/ft 2. The allowable stress in compression S_ is also 25 000 lb/ft 2.

The design is acceptable if it meets two criteria [1, 6]. The first criterion is satisfied (1) if

the design is fully stressed, as discussed earlier, and (2) if the displacement constraints are not

violated; that is, Qmax<__ (1 + d), where Qmax is the displacement ratio, which is defined as the

displacement of a node over the maximum allowable displacement at the node, and d is a small

parameter described previously. The second criterion is satisfied (1) if the design is displacement

critical (i.e., (1 - d) <__Qmax <- (1 + d), (2) if the stress constraints are not violated
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(i.e., Rma x <__(1 q- d), where Rma x is defined as before), and (3) if the optimality criterion is

satisfied for the displacement constraints. Figures 10 and 11 show the results of the computed

output.

Figure 10 shows the weight of the structure versus the number of critical designs. Note that

the weight decreases under the displacement constraints. When after 42 cycles the stress

constraints are added, the structural weight increases suddenly and then begins to decrease again

until, at 44 cycles, the design becomes optimal. Figure 11 shows the thickness of selected

elements versus the number of critical designs. In the final stages, when the design approaches

the acceptable criteria, the thickness of the elements decreases, whereas at the intermediate

stages it may increase or decrease. Figure 11 shows that, as expected, the elements closest to

the central load elements have a greater thickness than the more distant elements that have

achieved the minimum allowable thickness. The larger stresses are developed close to the central

load elements.

4. CONCLUSIONS

The example problem demonstrates that optimal design of thin shells of arbitrary shape can

be accomplished by a general-purpose synthesis program such as DESAP1. The major deficiency

of the present algorithm is that it requires a large number of design cycles to reach convergence

to the final design, which is typical of other structural optimization algorithms. The economy of

computation could be improved considerably by using a uniform scaling operation.

Because the displacement-constraint design is based on the exact optimal criterion and thus

has better convergence characteristics, it is important in running the program to use the

displacement constraints first and then impose the stress constraints. Once the design has
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converged under the displacement constraints, adding the stress constraints will result in only a

few more design cycles.

If the design has stress constraints only_ it is still worthwhile to impose contrived

displacement constraints on the initial stages of the design procedure. These constraints should

be replaced by the stress constraints after the initial design has converged.
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APPENDIX -- INVESTIGATION OF COEFFICIENTS Cxx and C

OF REDESIGN STRESS RATIO FORMULA

The stress ratio formula is a fourth-order equation in the variable X -- t_/t, where t is

the current thickness at the element and t' represents the improved thickness

X 4- CxxX2 q: CxX- C-- 0

where the coefficientCxx has the form

Cxx = (Nx/Nx*) 2 ÷ (Ny/N_) 2 q- (Nxy/Nxy) 2- NxNy/NxN;

where Nx, Ny, and Nxy are the normal and shear forces and Nx, N;, and Nxy

allowable normal and shear forces. Equation (10a) can be written as

where

ab <_0), then Cxx

then

Adding

or

Therefore,

Consequently, Cxx

(11)

(10a)

are the

Cxx-- a 2 + b2 q- c2- ab

a -- Nx/Nx, b - Ny/N;, and c --- Nxy/N*y. If ab is a nonpositive number (i.e.,

is always a positive number. If ab is a nonnegative number (i.e., ab _> 0),

-ab > -2ab

a2 + b2 + c2 to both sidesof thisinequalitygives

a2 + b2 + cc- ab > a2 ÷ b2 + c2 -2ab

a 2+b 2+c 2-ab> (a-b) 2+c 2

a 2 + b 2 + c2 - ab > 0

isalways a nonnegativerealnumber if ab > O.
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The coefficient C of Eq. (11) has the form

c = (M_/M;)+ (MY/M;)2+ (Mxy/M;y)2 - CM_/M;)CMY/M;)

where Mx, My, and Mxy are the bending and twisting moments and M_, M_, and M_y are the

allowable bending and twisting moments as described previously. Again it can be shown that

the coefficient C is always a nonnegative real number.

This reasoning was used for the analytical solution of Eq. (11).
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Figure 1.--In-plane forces and deformations in local
system X' Y' Z'.

Figure 2.--Bending forces and deformations in local
system X' Y' Z'.
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Figure 3.--Stiffness matdx K and fictitious stiffness coefficients.
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Figure 4.uDirection of boundary elements in typical
shell structure.
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Figure 5.--First method of determining

boundary elements.
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Figure 6._Second method of determining
boundary elements.
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Figure 7.-- Example of thin shell.
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Figure 8.--Top view and cross-sectional area
of thin shell.

7_
6 g 22 210 _ 46 _; n;

_, 13 21 29 37 4_ _3 I
14 23 3 _) ' 53 59 6_1

I"

13 ;0 _ _3 4g 58 eTj
r_=

3 11 19 27 35 4 "1 51

12 21 30 "_;_ _ 57 F
F

I1 ;_'29 "_, ,_7 56 ESI

" I"
17 2S 33 41 49Io 19 2e_ 37 ,_!6 ,55 6_.[

I_. FEET

Figure 9.--Quarter section of thin shell to be
modeled.
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Figure 10.---Optimum design of thin, fiat shell
structure.
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